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ABSTRACT 
  
The concept of formation flight of multiple spacecraft near the libration points of the Sun-Earth/Moon (SEM) 
system, offers as many possibilities for space exploration as technical challenges. The initial focus of this research 
effort was the dynamics and control of formation flight in the circular restricted three-body problem (CR3BP). 
Presently, these results are transitioned into the more complete n-body ephemeris model to incorporate other 
gravitational perturbations as well as solar radiation pressure (SRP). The continuous control techniques previously 
applied in the CR3BP are successfully implemented in the SRP perturbed n-body ephemeris model. The current 
effort focuses mostly on the continuous control of spherical formations but also presents a summary of some 
naturally existing formations.  
 
INTRODUCTION 
 
 Much of the available research on formation flight focuses on Earth orbiting configurations, where the influence 
of other gravitational perturbations can be safely ignored. However, renewed interest in formations that evolve near 
the vicinity of the Sun-Earth libration points has inspired new studies regarding formation keeping in the three-body 
problem [1-14]. Some of these investigations focus on the simplified circular restricted three-body problem 
(CR3BP) [1-5]. Howell and Marchand [1] consider linear optimal control, as applied to nonlinear time varying 
systems, as well as nonlinear control techniques, including input and output feedback linearization. These control 
strategies are applied to a two spacecraft formation where the chief spacecraft evolves along a three-dimensional 
periodic halo orbit near the L2 libration point. A detailed study of the nominal formation keeping costs over a 6-
month period is presented for two types of configurations; for a constant relative separation distance, the chief-
deputy line is assumed to remain (a) fixed relative to the rotating frame, or (b) fixed relative to the inertial frame.  
 
 Formations modeled in the CR3BP do represent a good starting point for a preliminary analysis. However, 
ultimately, any definitive formation keeping studies must be performed in the n-body ephemeris model, where the 
time invariance properties of the CR3BP are lost and, consequently, precisely periodic orbits do not exist near the 
libration points. For formations determined in the ephemeris model, previous studies are focused on linear optimal 
control [6-7] as well as discrete targeter methods [8-12]. More recent studies [15] also consider feedback 
linearization methods, nonlinear optimal control, and discrete control methods that exploit the natural flow near the 
libration points. In particular, the implementation of a Floquet controller, modified from that usually implemented 
for station keeping [13-14], leads to the identification of naturally existing formations and further allows for direct 
deployment into these configurations. The present study is a continuation of previous work [1, 15] on continuous 
and discrete control techniques for formations that evolve near the libration points in the Sun-Earth/Moon system, as 
determined in the ephemeris model.  
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DYNAMICAL MODEL 
 
Background 
 
 In this investigation, the standard form of the relative equations of motion for the n-body problem, as 
formulated in the inertial frame ( )ˆ ˆ ˆX Y Z− − , is employed. The effects of solar radiation pressure (SRP) are also 
incorporated. Hence, the dynamical evolution of each vehicle in the formation is governed by  
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For notational purposes, let 2P  denote the central body of integration, in this case the Earth. Then, sP  represents the 
spacecraft, and the sum over j  symbolizes the presence of other gravitational perturbations. The SRP force vector, 
as discussed by McInnes [16], can be modeled as  
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where k  denotes the absorptivity of the spacecraft surface ( 2k =  for a perfectly reflective surface), 0S  is the 
energy flux measured at the Earth’s distance from the Sun [W/m2], 0D is the mean Sun-Earth distance [km], A  
represents the constant spacecraft effective cross sectional area [km2], c  is the speed of light [km/sec], sm  is the 
spacecraft mass [kg], β  is the angle of incidence of the incoming photons, n̂  denotes the unit surface normal, and 
d [km] represents the Sun-spacecraft distance. The sample spacecraft implemented in this study is modeled after the 
Terrestrial Planet Finder (TPF) combiner spacecraft, assuming a 25-meter diameter and a spacecraft mass of 700 kg. 
The SRP force parameters are summarized in Table 1.  

Table 1 – TPF Combiner S/C Parameters 

k 1.4 c 299792.458 km/sec A 4.9087×10-4 km2 

S0 1.358×103 W/m2 D0 1.49597870×108 km ms 700 kg 
 
Relative Motion In The Presence Of SRP 
 
 The equations of motion for both the chief and deputy spacecraft may be expressed in the following form, 

 ( ) ( ) ( ) ( ) ( )2 C C CP CI
I grav srp C Cr f f u t f u t= + + = + , (1.3) 

 ( ) ( ) ( ) ( ) ( )2 i i ii

i i

D D DP DI
I grav srp D Dr f f u t f u t= + + = + , (1.4) 

where ( )Cu t  and ( )
iDu t  denote the control accelerations required to maintain the desired nominal configuration, 

and ( )Cf  and ( )iDf  represent the net force acting on the chief spacecraft and the ith deputy vehicle, respectively. The 
numerical integration for all vehicles in the formation is performed in terms of inertial coordinates such that, for 
instance, 2 ˆ ˆ ˆiP D

i i ir x X y Y z Z= + + . Hence, the vehicle velocities and accelerations  are associated with the inertial 
frame (I) defined by the unit vectors X̂ , Ŷ , and Ẑ .  
 
 The chief spacecraft, or center of the formation, is assumed to evolve along a quasi-periodic Lissajous 
trajectory. Since this is a naturally existing solution in this regime, the baseline control acceleration ( )Cu t  is zero. 
The relative equations of motion for the ith deputy, then, are easily determined by subtracting Equation (1.3) from 
(1.4), 

 ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )i i ii

i i

D D DC CCDI
I grav grav srp srp D Dr f f f f u t f u t= − + − + = ∆ + . (1.5) 
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The vector iCDr  denotes the position of the ith deputy relative to the chief spacecraft while ( )iDf∆  represents the 
relative net force vector. Let ρ  represent the desired nominal path of the deputy spacecraft, then, ρ designates the 
nominal velocity vector, and ( )

iDu t  denotes the associated nominal control effort such that,  

 ( )i

i

D
Df u tρ = ∆ + . (1.6) 

The superscript “ ” denotes evaluation on the nominal solution ( ),ρ ρ . The error dynamics, defined by  

 { } { } ( )i i i i

i i i

CD D D DI I
I D D De r f f u u f u tρ δ δ= − = ∆ − ∆ + − = ∆ + , (1.7) 

are easily determined by subtracting the nominal motion in Equation (1.6) from (1.5). 
 
CONTINUOUS CONTROL IN THE EPHEMERIS MODEL 
 
 Previous studies by Howell and Marchand [1] demonstrate the efficiency and cost effectiveness of both input 
feedback linearization (IFL) and output feedback linearization (OFL) methods for continuous formation control in 
the CR3BP. The IFL controller is designed to force the error dynamics of each state variable to follow a critically 
damped response. The OFL controller, on the other hand, is applied only to force the radial separation between the 
spacecraft to track some specific value. Hence, no relative orientation requirements are imposed on the formation. 
The initial investigation [1] also demonstrates that a linear quadratic regulator (LQR), derived from optimal control 
theory, yields essentially an identical error response and control acceleration history as the input feedback 
linearization approach in this regime. However, the IFL controller is computationally much less intensive and, by 
comparison, conceptually simpler. This particular characteristic makes the IFL controller more suitable for 
implementation in the ephemeris model than LQR. 
 
Input Feedback Linearization (IFL) 
 
 For the error dynamics outlined in Equation (1.7), the nominal solution corresponds to the zero vector, i.e., 
( ) 0e t = . Consistent with the previous definition of the IFL controller [1], suppose that a critically damped error 

response, characterized by a natural frequency nω , is desired. Then, the differential control input, ( )
iDu tδ , 

measured relative to the nominal control acceleration ( )
iDu t , is determined as  

 ( ) 22
i

I
D n nu t f e eδ δ ω ω= − ∆ − − . (1.8) 

The total control effort is then the sum of the nominal control input, ( )
iDu t , and the differential control 

acceleration, ( )
iDu tδ .  

 
 To illustrate the effectiveness of the IFL controller, define a two spacecraft 50-m formation that is constrained 
to remain aligned with the inertial y-axis ( Ŷ ) at all times. The nominal relative motion is described by 
( ) ( ) ˆ50 mt Yρ =  and ( ) 0 m/sectρ = . The chief spacecraft is assumed to evolve along a reference “halo” orbit near 

L2 characterized by a 200,000 km maximum out-of-plane excursion. For an arbitrary injection error, relative to ρ  
and ρ , of the form ( )ˆ ˆ ˆ7 5 3r X Y Zδ = − +  km in position and ( )ˆ ˆ ˆI r X Y Zδ = − +  m/sec in velocity, the total 
formation keeping cost, over a period of 180 days, is around 3.4 m/sec. The associated response is illustrated in 
Figure 1. Most of the total cost is incurred during the first six hours to correct the large injection error. The 
maximum thrust level required, for a 700 kg spacecraft, during this correction phase is around 0.85 N. However, 
once the nominal distance is achieved, the required thrust levels drop down to 10-9 N. In contrast, formations 
characterized by relative separation distances on the order of  thousands of kilometers require nominal thrust levels 
on the order of 10-3 N.  
 
Output Feedback Linearization (OFL) 
 
 Consider the relative equations of motion for the ith deputy as defined by Equation (1.5). Let ( )iCDr r t= , 

( )( )iDf f r t∆ = ∆ , and ( ) ( )
iDu t u t= . Then, the relative equations of motion associated with the three-body problem 
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can be represented, in vector form, as ( ) ( )( ) ( )r t f r t u t= ∆ + . The OFL controller, originally formulated in [1], 
seeks to identify the control input ( )u t  such that ( ),r g r r= , where ( ),g r r  is representative of the desired 
critically damped radial error response. Note that the OFL controller enforces only the radial distance constraint. 
The vehicle orientation is not explicitly controlled. This leads to a single scalar constraint that can be represented in 
the form 

 ( ) ( )( ) ( ) ( ), Th r t r t u t r t= . (1.9) 

where ( ) ( )( ),h r t r t  is some nonlinear function of ( )r t  and ( )r t . The expression in Equation (1.9) represents one 
equation in three unknowns, the three control accelerations in the input vector ( )u t . Since no additional constraint 
equations are imposed, there are an infinite number of solutions that satisfy Equation (1.9). In the initial 
investigation into the OFL controller [1], the left side of Equation (1.9) is factored in terms of ( )r t  to allow for an 
explicit solution for ( )u t . Although this particular solution satisfies the control goal, there are no guarantees or 
expectations of optimality. This particular formulation is based on the assumption that the measured output is 
defined as y r= . However, previously [15] and in the present study, formulations based on  2y r=  and 1y r−=  are 
also considered. Each of these measured output quantities leads to a different control law, as listed in Table 2. 
Furthermore, although the resulting control laws achieve the formation goal, as specified, the associated formation 
keeping costs can be dramatically different.  
 

Table 2 – Summary of Control Laws and Formation Keeping Costs (Over 180 days) 

 as Determined in the Inertial Frame Associated with the Ephemeris Model 

Output Vector Control Law 
Cumulative ∆V 

 Over 180 Days 

y r=  ( ) ( ) ( )2

, Tg r r r r ru t r r f r
r rr

    = − + −   
   

 2,342.2 m/sec  

2y r=  ( ) ( ) ( )2 2

,1
2

Tg r r r ru t r f r
r r

  = − − 
  

 16,653.0 m/sec  

1y r−=  ( ) ( ) ( )2, 3
Tr r ru t rg r r r r f r

rr
   = − − + −   

  
 50.8 m/sec  

 
 Since the control laws in Table 2 only enforce the radial distance constraint, and the relative orientation of the 
deputy with respect to the chief spacecraft is free, the nominal motion is equivalent to the deputy evolving on the 
surface of a sphere that is centered at the chief spacecraft. For some given initial state, ( )0r  and ( )0r , the control 
laws listed in Table 2 essentially drive the deputy onto the surface of this nominal sphere. The corresponding 
trajectories converge onto the sphere following the prescribed critically damped dynamics. Numerical evidence 
suggests that the plane of motion of the deputy spacecraft is completely defined by the initial conditions, ( )0r  and 
( )0r . To better visualize this, consider the angular momentum quantity ˆh r r hh= × = .  As the control inputs 

described in Table 2 are applied, numerical analysis indicates that the direction of the angular momentum vector is 
fixed inertially (in the ephemeris model) while the magnitude follows a critically damped response onto some final 
converged value. If, instead, the formulation were associated with the synodic rotating frame [1, 15], the results 
indicate that the angular momentum direction is fixed in the rotating frame. The sample formation presented in 
Figure 2 is determined in the ephemeris model. The path of each of these vehicles is presented in the inertial frame. 
Hence, the converged relative orbits in Figure 2 are inertially fixed. It is also worth noting that the converged  
“orbital period” along the nominal sphere depends on the initial relative velocity of the vehicle, as illustrated in 
Figure 3. 
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 To demonstrate the impact of the relative velocity of the deputy on the formation keeping cost, consider a 
nominal spherical formation characterized by a 5-km radial distance. Let ( )0r  and ( )0r  denote the initial relative 
position and velocity vectors, respectively. For ( ) ˆ ˆ ˆ0 12 5 3r x y z= − +  km and ( )0 0r =  m/sec the net formation 
keeping cost required to drive the deputy onto the surface of the nominal sphere is miniscule. However, as the 
relative velocity of the deputy increases, the OFL controller yields significantly higher costs. That is because the 
controller is trying to maintain a rotation rate specified by the initial velocity injection error, which is not consistent 
with the natural dynamics in the vicinity of the reference orbit. For the three output vectors defined in this study, the 
associated control inputs are summarized in Table 2. Also listed in Table 2 are the correction costs that correspond 
to an initial relative state defined by ( ) ˆ ˆ ˆ0 12 5 3r x y z= − +  km and ( ) ˆ ˆ ˆ0r x y z= − +  m/sec. The associated nominal 
formation in this case is defined by a constant relative separation of 5 km. 
 
CONTINUOUS VERSUS DISCRETE CONTROL  
 
 Based on results from previous investigations, [1, 3-5] it appears that it is possible, at least computationally, to 
achieve precise formations near the libration points if continuous control is both available and feasible. Howell and 
Marchand [1,15] demonstrate that continuous control methods, such as LQR and feedback linearization techniques, 
can mathematically enforce non-natural configurations but lead to extremely small control acceleration levels. For 
instance, for a 700 kg spacecraft, thrust levels can range between 10-3 N for a 5000 km formation to 10-9 N for a 50 
meter formation. The thrust levels that are required, near the libration points, to maintain a small formation like TPF 
presently represent a technical challenge. Furthermore, although continuous control approaches are mathematically 
sound, the science goals of deep space missions may impose a series of constraints that eliminate continuous control 
as a feasible option. Some also suggest that maintaining a precise formation is, perhaps, ultimately not as critical as 
generating precise knowledge of the relative position of each spacecraft in the formation. In these cases, a discrete 
formation keeping strategy may represent an important capability.  
 
DISCRETE CONTROL IN THE EPHEMERIS MODEL 
 
 Driven by control and/or implementation requirements, some new consideration is warranted concerning the 
degree of accuracy to which the formation can be maintained via discrete impulses. An LQR controller, based on a 
discrete time system, yields the optimal magnitude of each differential control impulse at specified time intervals. 
However, the value of the nominal control input that must be added is still assumed to be continuously available. So, 
in a truly discrete control strategy, how often must an impulsive maneuver be incorporated to maintain the desired 
configuration to some acceptable degree of accuracy, even in the presence of external perturbations?  
 
Targeting A Nominal Relative State 
 
 Continuous control methods ensure that the desired nominal is enforced at each instant of time. However, if the 
formation keeping is discretized, how far will the vehicle configuration diverge from the specified nominal between 
maneuvers? Howell and Marchand [15] implement a simple targeter scheme that forces the vehicles in the formation 
to meet their nominal constraints at specified times during the mission. The impulsive scheme presented in [15] 
accomplishes the objective to within reasonable tolerances, provided the maneuvers are closely spaced. For instance, 
if ( ) ( ) ˆ10 mt Yρ =  and a maneuver is performed once daily, the relative position of the deputy is always within 1 
centimeter of the specified nominal, ( )tρ . However, for a fixed maneuver interval, larger nominal separations lead 
to larger deviations from the nominal configuration in-between maneuvers. This deviation becomes significant for 
nominal separations on the order of kilometers. This suggests that nearly continuous control is required to precisely 
enforce large relative separations between the vehicles in the formation.  
 
 In general, achieving the desired nominal configuration to within extreme accuracy requires maneuvers that are 
fairly close to each other. However, this requirement introduces yet another difficulty. As the maneuvers become 
more closely spaced they also decrease in size. For a 10 meter nominal separation these maneuvers are on the order 
of 10-6 m/sec.  
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So, regardless of whether continuous or discrete control is available, accurately maintaining a non-natural nominal 
configuration, with small relative separations, is apparently not achievable with the technology presently available. 
Since the natural flow in this region of space is constantly acting against these non-natural configurations, the 
relative error increases rapidly if these small maneuvers are not accurately implemented. Conversely, formations 
that take advantage of the natural flow near the reference orbit require minimal station keeping beyond the initial 
injection maneuver.  
 
Natural Formations 
 
 Understanding the natural flow near the libration points can be an extremely useful tool in constructing nominal 
formations and designing feasible control strategies that adequately enforce the desired configurations. Howell and 
Barden [8] previously identified naturally existing multi-spacecraft formations associated with a quasi-periodic torus 
that envelops a reference halo orbit in the CR3BP such as that illustrated in Figure 4(a). Their findings also reveal 
that these formations are preserved in the ephemeris model. Since this represents an unforced solution to the 
equations of motion, no control inputs are necessary. Howell and Marchand [15] identify another type of naturally 
existing formation analogous to a string of pearls, as illustrated in Figure 4(b). The surface illustrated in Figure 4(b) 
is traced by a quasi-periodic Lissajous trajectory near the Sun-Earth/Moon L2 point, as determined in the SRP 
perturbed n-body ephemeris model. By properly phasing each vehicle, it is possible for the formation to naturally 
evolve along this surface such that the relative positions of each spacecraft in the formation are unaltered and the 
relative distances are closely bounded. That is, if the formation originates as a string of pearls, the orientation of the 
string is relatively unaffected in time, the lead vehicle always remains in the lead and the order of each subsequent 
vehicle along the “string of pearls” remains unchanged. Since each spacecraft in this formation evolves along a 
naturally existing Lissajous trajectory, maintaining this type of formation can be achieved with a standard station 
keeping approach. 
 
 During the development of a Floquet based controller, Howell and Marchand [15] also identify other types of 
naturally existing formations that utilize the flow along the stable and center manifold near the reference halo orbit. 
The controller is used to numerically identify these naturally existing formations as well as possible deployment into 
these configurations. The reference halo orbits of interest here are unstable. In particular, the eigenstructure of the 
associated linear system leads to one unstable mode, one stable mode, and four center modes. The unstable and 
stable modes are tangent to the local stable and unstable manifolds near the halo orbit, respectively. The center 
modes indicate the existence of bounded solutions near the reference orbit. For instance, two of these center modes 
lead to nearby periodic halo orbits. The other two modes, then, are associated with the torus in Figure 4(a). Given 
some initial state, the goal of the Floquet controller is to implement an impulsive maneuver that removes the 
unstable component of the relative state as well as the components associated with two of the four center modes. For 
a general set of initial conditions, this controller forces the deputy to follow a stable manifold path that converges 
onto a bounded solution near the reference halo orbit. This solution can be nearly periodic or quasi-periodic. 
 
 If the initial conditions are properly selected, ( ) 0 ˆ0r r y= , removing the unstable mode along with the two 
center modes associated with the torus, leads to the identification of nearly periodic relative orbits such as those 
illustrated in Figure 5. The eight spacecraft formation illustrated in Figure 5 is propagated over 1800 days. Though 
these orbits are actually expanding, the rate of expansion is very slow. In fact, propagation of these trajectories over 
a period of 18,000 days leads to solutions that area essentially identical to those in Figure 5. Nearly vertical orbits, 
associated with ( ) 0 ˆ0r r z= ,  also exist near the reference halo orbit, as illustrated in Figure 6. These are visibly 
expanding but at a very slow rate over the 1800 days of the integration.  For initial conditions of the form 
( ) 0 0ˆ ˆ0r y y z z= +  the rate of expansion increases as 0 0y →  and 0 0z r→ . This evolution is better visualized from 

Figure 7. 
 
CONCLUSIONS 
 
 Mathematically, input and output feedback linearization techniques are effective in enforcing non-natural 
formations near the libration points, as determined in the SRP perturbed n-body ephemeris model. Input feedback 
linearization is effective in maintaining formations that are fixed in position and velocity relative to the reference 
“halo” orbit. Furthermore, in this region of space, the resulting error response and control input histories are 



   

 7  

essentially identical to those obtained via LQR methods. IFL control, however, is not only conceptually simpler than 
time varying LQR methods, but it is also better suited for numerical implementation in the ephemeris model.  
 
 The present study also demonstrates that output feedback linearization techniques are effective in achieving 
inertially fixed circular orbits relative to a reference “halo” orbit. This is potentially useful for formations that seek 
spherical configurations evolving at non-natural rotation rates. The OFL control laws presented here are not fuel 
optimal, but the resulting thrust levels are physically achievable. Although fuel optimal is usually the goal for most 
missions, fuel optimal strategies for formations evolving near the libration points lead to extremely small thrust 
levels that are ultimately unrealistic given the present state of technology.  
 
 Nearly continuous control is essential if precise enforcement of these non-natural configurations is required to 
achieve the mission goals. However, precise formation keeping may not be necessary, given a possible shift to 
improved navigation and relative position information.  Near the libration points, if maintaining a tight non-natural 
formation, via discrete impulses, is desired, frequent maneuvers are necessary. In this case, smaller maneuver 
intervals lead to smaller maneuvers. These can be on the order of 10-6 m/sec which raises an implementation issue. 
 
 The difficulties encountered with non-natural configurations may be overcome by developing a better 
understanding of the naturally existing formations. Although a nominal configuration completely consistent with the 
natural flow near the reference orbit is unlikely, understanding these naturally existing behaviors can lead to the 
development of techniques to construct formations that meet the mission objectives while exploiting the natural 
structure of the phase space. To that end, a series of naturally existing formations are also presented here.  
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Figure 1 – IFL Response to Injection Error  
as Determined in the Ephemeris Model of the Sun-Earth/Moon System 

 

 
 

FIGURE 2 – OFL Controlled Response of Deputy Spacecraft Over 180 Days 
as Determined in the Ephemeris Model of the Sun-Earth/Moon System 
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FIGURE 3 – Variation in Converged Period with Initial Relative Speed of Vehicle 
for Spherical Formations Determined in the Ephemeris Model (OFL Control) 

 

 

 

Figure 4 – Natural Torus (a) and “String of Pearls” (b) Formation in the Ephemeris Model 
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Figure 5 – Natural Eight Spacecraft Formation About a Single Chief S/C 
 

 

 

Figure 6 – Nearly Vertical Relative Orbits  (4 S/C Formation) 
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Figure 7 – Variation in Relative Orbit Expansion Rate Along the yz-plane 

 


